Right now it's just coming in at around 2lbs. I'd say not more than 5-8 by the time the NO2 system is installed.
Going to the rod run Fri - Sun I'll get that nox info ..................... put this up for you so no one freaks out . info Nitrous oxide, commonly known as "laughing gas", is a chemical compound with the chemical formula N2O. At room temperature, it is a colorless non-flammable gas, with a pleasant, slightly sweet odor and taste. It is used in surgery and dentistry for its anesthetic and analgesic effects. It is known as "laughing gas" due to the euphoric effects of inhaling it, a property that has led to its recreational use as an inhalant drug. It is also used in motor racing as an oxidizer to increase the power output of engines........Nitrous oxide can be used as an oxidizer in a rocket motor. This has the advantages over other oxidizers that it is non-toxic and, due to its stability at room temperature, easy to store and relatively safe to carry on a flight. As a secondary benefit it can be readily decomposed to form breathing air. Its high density and low storage pressure enable it to be highly competitive with stored high-pressure gas systems.
In a 1914 patent, American rocket pioneer Robert Goddard suggested nitrous oxide and gasoline as possible propellants for a liquid-fueled rocket. Nitrous oxide has been the oxidizer of choice in several hybrid rocket designs (using solid fuel with a liquid or gaseous oxidizer). The combination of nitrous oxide with hydroxyl-terminated polybutadiene fuel has been used by SpaceShipOne and others. It is also notably used in amateur and high power rocketry with various plastics as the fuel. An episode of MythBusters featured a hybrid rocket built using a paraffin/powdered carbon mixture as its solid fuel and nitrous oxide as its oxidizer.
Nitrous oxide can also be used in a monopropellant rocket. In the presence of a heated catalyst, N2O will decompose exothermically into nitrogen and oxygen, at a temperature of approximately 1300 °C. Because of the large heat release the catalytic action rapidly becomes secondary as thermal autodecomposition becomes dominant. In a vacuum thruster, this can provide a monopropellant specific impulse (Isp) of as much as 180s. While noticeably less than the Isp available from hydrazine thrusters (monopropellant or bipropellant with nitrogen tetroxide), the decreased toxicity makes nitrous oxide an option worth investigating. Because of its release of very high temperature oxygen as a monopropellant the addition of even small amounts of a fuel such as hydrogen rapidly increases the specific impulse and the high oxygen temperatures simplify ignition of the fuel. Isp greater than 340 seconds can be readily achieved. Its low freezing point also eases thermal management as compared to hydrazine -- a valuable property on a spacecraft which may contain quantities of cryogenic propellant.